

Programme outcome, Programme Specific outcome and Course outcome

HOD IQAC PRINCIPAL

Programme Outcome:

PO1: Ability to understand, analyze, and apply academic knowledge to a practical environment.

PO2: Recognize the relationship between theory and application.

PO3: Possess an appropriate set of practical skills to ensure a positive career.

PO4: Work effectively under stress under pressure. Identify and relate the connection between theory and applications.

PO5: Exhibit positive attitudes and values toward the discipline, so that they can contribute to society.

PO6: Develop effective communication skills for betterment in employability.

PO7: Communication effectively with whom they are communicating and the society to make effective presentations, and deliver clear instructions.

PO8: Function effectively as an individual, and can able to be a member or leader even diverse in teams.

Programme Specific Outcome:

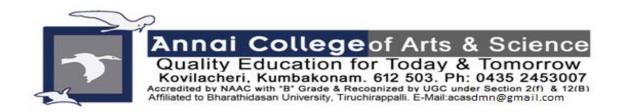
As a quality assurance analyst, the following core competencies will be required:

PSO1: Think critically.

PSO2: Recognize and understand information, and be able to identify, locate, evaluate, and effectively deal with any issue or problem.

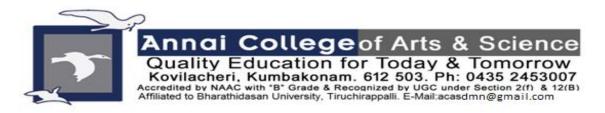
PSO3: Developing logically and at a high rate of accuracy.

PSO4: Acquire depth knowledge and be able to apply it.

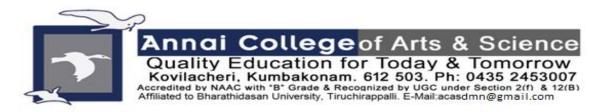

PSO5: To understand, formulate, and determine how to utilize live projects that various stages of life.

PSO6: To be able to master the software to complete the tasks.

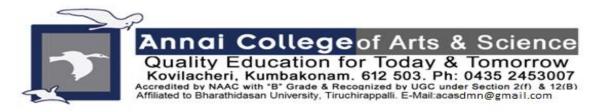
PSO7: To encourage the students' creativity to develop new techniques to benefit society.

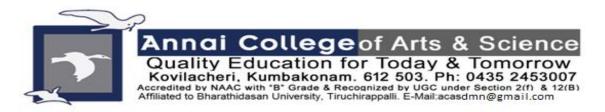

PSO8: Develop an understanding of the precise knowledge of computer application, and able to integrate commercial with their logical skills.

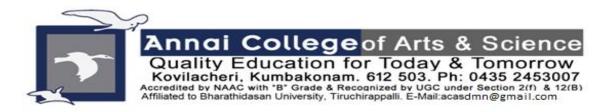
PSO9: Be a life- long learner who can able to develop his/her life skills.



Course Outcomes:


Name of the Course	
with	Course Outcomes
Subject Code	
MATHEMATICAL	CO1: Ability to apply mathematical logic to solve problems.
FOUNDATION FOR	CO2: Understand sets, relations, functions, and discrete structures.
COMPUTER	CO3: Able to use logical notation to define and reason about fundamental
SCIENCE -P16CS11	mathematical concepts such sets, relations, and functions.
	CO4: Able to formulate problems and solve recurrence relations
	CO5 : Able to model and solve real-world problems using graphs and trees.
WEB	CO1: Understand the essentials of web oriented services and find the
TCHNOLOGIES -	importance in web page creation.
P16CS12	CO2: Understand the meaning of derivative of a function.
	CO3: Gain knowledge of acquiring data in Web Pages, and web Browser
	and error Handling.
	CO4: Knowledge in different file handling.
	CO5: Understand the concepts of Working with database.
	CO6: Understand the concept of cookies.
	CO7: Acquire the idea about File Transfer Protocol.
	CO8: Understand various theorem using Ajax.
DESIGN AND	CO1: Describe the divide and conquer paradigm and explain when an
ANALYSIS OF	algorithmic design situation calls for it.
ALGORITHMS -	CO2: Describe the greedy paradigm and explain when an algorithmic
P16CS13	situation calls for it.
1100010	CO3 : Explain the major graph algorithm and their analysis.
	CO4: Explain the different ways to analyze randomized algorithms
	(expected running time, probability of error)
	CO5: Explain what competitive analysis is and to which situation it applies
	and perform competitive analysis.


TO BEITHNING	ENT OF COMPUTER SCIENCE
DISTRIBUTED	CO1: To provide hardware and software issues in modern
OPERATING SYSTEM –	distributed systems.
P16CS14	CO2: To get knowledge in distributed architecture, naming,
	synchronization, consistency and replication.
	CO3: To analyze the current popular distributed system such as
	peer-to- peer system will also be analyzed.
	CO4: To know about shared memory techniques.
	CO5: Have sufficient knowledge about file access.
	CO6: Have knowledge of synchronization and deadlock.
OOAD & UML -P16CS21	CO1: Specify, analyze and design the use case driven
00/1D & CWIL -1 100321	requirements for a particular system.
	CO2: Model the event driven state of object and transform them
	into implementation specific layouts.
	CO3: Identify, analyze the sub system, various components and
	collaborate them interchangeably.
	CO4: Importance of modeling in the software development life
	cycle.
	CO5: To know how to employ the UML notation to create
	effective and efficient system design.
	CO6: To know the object oriented approach to analyzing and
	designing system and software solution.
DISTRIBUTED	CO1: Understand the design principle in distributed systems and
TECHNOLOGIES -P16CS22	the architectures for distributed systems.
	CO2: Apply various distributed algorithms related to clock
	synchronization, concurrency control, deadlock detection, load
	balancing, voting etc.,
	CO3: Analyze fault tolerance and recovery in distributed systems
	and algorithm for the same.
	CO4: Analyze the design and functions of existing distributed
	system and file system.
	CO5: Implement different distributed algorithm over current
	distributed platforms.


MOBILE	CO1: Discuss the cellular system design and technical challenges.
COMMUNICATION -	CO2: Analyze the mobile radio propagation, fading, diversity
P16CSE1	concepts and the channel modeling.
110001	CO3: Analyze the design parameters, link design, smart antenna,
	beam forming and MIMO system.
	CO4: Analyze multi user system, CDMA, WCDMA, Network
	planning and OFDM concepts.
	CO5: Summarize the principles and applications of wireless
	systems and standard
ARTIFICIAL	CO1: Solve basic AI based problems.
INTELLIGENCE -P16CSE2	CO2: Define the concepts of Artificial Intelligence.
	CO3: Apply AI techniques to real-world problems to develop
	intelligent systems.
	CO4: Select appropriately from a range of techniques when
	implements.
	CO5: To impart knowledge about the concepts of machine
	learning
	CO6 : To introduce the fundamental concepts of distributed
	nature of operating system, network, data and processes.
	CO7: To enable the students to understand the concepts of
	computing environment where computations do not take place at
	one system and accordingly enable them to solve related
	problems.
DATA MINING AND	CO1: Understand the functionality of the various data mining
WARE HOUSING –P16CS31	and data warehousing components.
	CO2: Appreciate the strengths and limitations of various data
	mining and data warehousing models.
	CO3: Explain the analyzing techniques of various data.
	CO4: Describe different methodologies used in data mining and
	data warehousing.
	CO5: Compare different approaches of data warehousing and
	data mining with various technologies.

COMPILER DESIGN – P16CS32	CO1: Basic knowledge of compilation steps, ability to apply automata theory and knowledge on formal languages. CO2: Ability to design and implement scanner modules in compilers. CO3: Ability to identify and select suitable parsing strategies for a
	compiler for various cases. knowledge in alternative methods(top- down or bottom-up, etc).
	CO4: Knowledge and ability to devise, select, and use modern techniques and tools needed to design and implement compilers.
NETWORK SECURITY -	CO1: Identify some of the factors driving the need for networks.
P16CSE4	CO2: Identify and classify particular examples of attacks.
	CO3: Define the terms vulnerability, threat and attack.
	CO4: Identify physical points of vulnerability in simple networks.
	CO5: Compare and contrast symmetric and asymmetric
	encryption systems and their vulnerability of attacks, and explain
	the characteristics of hybrid systems.
CLOUDCOMPUTING-	CO1: Explain the core concepts of the cloud computing
P16CS41	paradigm. CO2: Apply fundamentals concepts in cloud infrastructure to understand the tradeoffs in power, efficiency and cost, and then study how to leverage and manage single and multiple datacenters to built and deploy cloud application that are resilient, elastic and cost-efficient. CO3: Discuss system, network and storage virtualization and outline their role in enabling the cloud computing system model. CO4: Analyze various cloud programming model and apply them to solve problems on the cloud.
	CO5: Illustrate the fundamental concepts of cloud storage and demonstrate their use in storage systems such as Amazon S3 and HDFS.

WIRELESS SENSOR	CO1: Explain the basic concepts of wireless sensor network,
NETWORK -P16CS42	sensing, computing and communication tasks.
	CO2: Describe and explain the hardware, software and
	communication for wireless sensor network nodes.
	CO3: Describe and explain radio standards and communication
	protocols adapted in wireless sensor network.
	CO4: Explain the architecture, features, and performance for
	wireless sensor network systems and platforms.
	CO5: Describe and analyze the specific requirements of
	application in wireless sensor network for energy efficiency,
	computing, storage and transmission.
WEB TECHNOLOGIES	CO1: To analyze a web page and identify its elements and
LAB(P) -P16CS15P	attributes
(-)	CO2: To create web pages using XHTML
	CO3: To build dynamic web pages using JavaScript (Client side
	programming).
	CO4: To create XML documents and Schemas.
	CO5: Understand the concepts of Working with database, cookies
	and various theorem
DISTRIBUTED	CO1: To develop the record using Grid view, details view, form
TECHNOLOGIES LAB(P)	view controls.
-P16CS23P	CO2: To make use of image control involving two hotspots in a
11000201	web page.
	CO3: Establishing the security features in a simple websites with
	five pages.
	CO4: Using state management concepts in a mobile web
	application.
	CO5: Develop a web service to fetch a data from the table and
	send it across to the client

DATA MINING LAB (P) – P16CS33P	CO1: Be familiar with mathematical foundations of data mining tools. CO2: Understand and implement classical models and algorithms in data warehouses and data mining. CO3: Characterize the kinds of patterns that can be discovered by association rule mining, classification and clustering. CO4: Master data mining techniques in various applications like social, scientific and environmental context. CO5: Develop skill in selecting the appropriate data mining algorithm for solving practical problems.
OPEN SOURCE LAB (P) – P16CS43P	CO1: Implement various applications using build systems. CO2: Understand the installation of various packages in open source operating systems. CO3: Create simple GUI applications using Gambas3. CO4: Understand various version control systems. CO5:Understand the kernel configuration and virtual environment.